SAT Math Level 2 Practice Test 5

Functions Definitions

1. If $\{(3,2),(4,2),(3,1),(7,1),(2,3)\}$ is to be a function, which one of the following must be removed from the set?

- A. (3,2)
- B. (4,2)
- C. (2,3)
- D. (7,1)

E. none of the above

- **2.** For $f(x) = 3x^2 + 4$, g(x) = 2, and $h = \{(1,1), (2,1), (3,2)\}$,
- A. *f* is the only function
- B. h is the only function
- C. f and g are the only functions
- D. g and h are the only functions
- E. f, g, and h are all functions

3. What value(s) must be excluded from the domain of $f = \left\{ (x, y) : y = \frac{x+2}{x-2} \right\}$?

- A. -2
- B. 0
- C. 2
- D. 2 and -2
- E. no value

Combining Functions

1. If
$$f(x) = 3x^2 - 2x + 4$$
, $f(-2) =$

- A. -12
- B. -4
- C. -2

D. 12
E. 20
2. If $f(x) = 4x - 5$ and $g(x) = 3^x$, then $f(g(2)) =$
A. 3
B. 9
C. 27
D. 31
E. none of the above
3. If $f(g(x)) = 4x^2 - 8x$ and $f(x) = x^2 - 4$, then $g(x) =$
A. 4 - x
B. <i>x</i>
C. 2x - 2
D. 4x
$E.\ x^2$
4. What values must be excluded from the domain of $(g)(x)$ if $f(x) = 3x^2 - 4x + 1$ and $g(x) = 3x^2 - 4x + 1$
4. What values must be excluded from the domain of (x) if $f(x) = 3x^2 - 4x + 1$ and $g(x) = 3x^2 - 4x + 1$
A. 0
B. 1
C. 3
D. both ±1
E. no values
5. If $g(x) = 3x + 2$ and $g(f(x)) = x$, then $f(2) = x$
A. 0
B. 1
C. 2
D. 6
E. 8

6. If p(x) = 4x - 6 and p(a) = 0, then a = 0

3?

- A. -6
- B. $-\frac{3}{2}$
- C. $\frac{3}{2}$
- D. $\frac{2}{3}$
- E. 2
- 7. If $f(x) = e^x$ and $g(x) = \sin x$, then the value of $(f \circ g)(\sqrt{2})$ is
- A. -0.01
- B. -0.8
- C. 0.34
- D. 1.8
- E. 2.7

Inverses Function

- **1.** If f(x) = 2x 3, the inverse of f, f^{-1} , could be represented by
- A. $f^1(x) = 3x 2$
- B. $f^{-1}(x) = \frac{1}{2x-3}$
- C. $f^{-1}(x) = \frac{x-2}{3}$
- D. $f^{-1}(x) = \frac{x+2}{3}$
- E. $f^{-1}(x) = \frac{x+3}{2}$
- **2.** If f(x) = x, the inverse of f, f^{-1} , could be represented by
- A. $f^{-1}(x) = x$
- B. $f^{-1}(x) = 1$

C.
$$f^{-1}(x) = \frac{1}{x}$$

D.
$$f^{-1}(x) = y$$

E. f^{-1} does not exist

3. The inverse of $f = \{(1,2),(2,3),(3,4),(4,1),(5,2)\}$ would be a function if the domain of f is limited to

4. Which of the following could represent the equation of the inverse of the graph in the figure?

A.
$$y = -2x + 1$$

B.
$$y = 2x + 1$$

C.
$$y = \frac{1}{2}x + 1$$

D.
$$y = \frac{1}{2}x - 1$$

E.
$$y = \frac{1}{2}x - \frac{1}{2}$$

Odd and Even Functions

1. Which of the following relations are even?

I.
$$y = 2$$

II.
$$f(x) = x$$

III.
$$x^2 + y^2 = 1$$

- A. only I
- B. only I and II
- C. only II and III
- D. only I and III
- E. I, II, and III
- 2. Which of the following relations are odd?

I.
$$y = 2$$

II.
$$y = x$$

III.
$$x^2 + y^2 = 1$$

- A. only II
- B. only I and II
- C. only I and III
- D. only II and III
- E. I, II, and III
- **3.** Which of the following relations are both *odd* and *even*?

1.
$$x^2 + y^2 = 1$$

II.
$$x^2 - y^2 = 0$$

III.
$$x + y = 0$$

- A. only III
- B. only I and II
- C. only I and III
- D. only II and III
- E. I, II, and III
- **4.** Which of the following functions is neither *odd* nor *even*?

A.
$$\{(1,2),(4,7),(-1,2),(0,4),(-4,7)\}$$

B.
$$\{(1,2),(4,7),(-1,-2),(0,0),(-4,-7)\}$$

C.
$$y = x^3 - 1$$

- D. $y = x^2 1$
- E. f(x) = -x

Linear Functions

- **1.** The slope of the line through points A(3,-2) and B(-2,-3) is
- A. -5
- B. 5
- $\frac{1}{5}$
- D. 1
- E. 5
- **2.** The slope of line 8x + 12y + 5 = 0 is
- A. $-\frac{3}{2}$
- $-\frac{2}{3}$
- C. $\frac{2}{3}$
- D. 2
- E. 3
- **3.** The slope of the line perpendicular to line 3x 5y + 8 = 0 is
- A. $-\frac{5}{3}$
- $-\frac{3}{5}$
- C. 5
- 5 D. 3
- E. 3

- **4.** The *y*-intercept of the line through the two points whose coordinates are (5,-2) and (1,3) is
- A. $-\frac{5}{4}$
- 5 B. 4
- C. $\frac{17}{4}$
- D. 7
- E. 17
- **5.** The equation of the perpendicular bisector of the segment joining the points whose coordinates are (1,4) and (-2,3) is
- A. 3x 2y + 5 = 0
- B. x 3y + 2 = 0
- C. 3x + y 2 = 0
- D. x 3y + 11 = 0
- E. x + 3y 10 = 0
- **6.** The length of the segment joining the points with coordinates (-2,4) and (3,-5) is
- A. 2.8
- B. 3.7
- C. 10
- D. 10.3
- E. none of these
- **7.** The slope of the line parallel to the line whose equation is 2x + 3y = 8 is
- A. -2
- B. $-\frac{3}{2}$
- C. $-\frac{2}{3}$
- 2 D. 3

E.
$$\frac{3}{2}$$

8. If the graph of $\pi x + \sqrt{2}y + \sqrt{3} = 0$ is perpendicular to the graph of ax + 3y + 2 = 0, then a = 0

- A. -4.5
- B. -2.22
- C. -1.35
- D. 0.45
- E. 1.35

Quadratic Functions

1. The coordinates of the vertex of the parabola whose equation is $y = 2x^2 + 4x - 5$ are

- A. (2, 11)
- B. (-1, -7)
- C. (1, 1)
- D. (-2, -5)
- E. (-4, 11)

2. The range of the function

$$f = \{(x,y): y = 5 - 4x - x^2\}$$
 is

- A. $\{y: y \le 0\}$
- B. $\{y: y \ge -9\}$
- C. $\{y: y \le 9\}$
- D. $\{y: y \ge 0\}$
- E. $\{y: y \le 1\}$

3. The equation of the axis of symmetry of the function $y = 2x^2 + 3x - 6$ is

A.
$$x = -\frac{3}{2}$$

$$x = -\frac{3}{4}$$

- C. $x = -\frac{1}{3}$
- D. $x = \frac{1}{3}$
- E. $x = \frac{3}{4}$
- **4.** Find the zeros of $y = 2x^2 + x 6$.
- A. 3 and 2
- B. -3 and 2
- C. $\frac{1}{2}$ and $\frac{3}{2}$
- D. $-\frac{3}{2}$ and 1
- $\frac{3}{2}$ E. $\frac{3}{2}$ and -2
- **5.** The sum of the zeros of $y = 3x^2 6x 4$ is
- A. -2
- B. $-\frac{4}{3}$
- $\frac{4}{3}$
- D. 2
- E. 6
- **6.** $x^2 + 2x + 3 = 0$ has
- A. two real rational roots
- B. two real irrational roots
- C. two equal real roots
- D. two equal rational roots
- E. two complex conjugate roots
- **7.** A parabola with a vertical axis has its vertex at the origin and passes through point (7,7). The parabola intersects line y = 6 at two points. The length of the segment joining these points is

A. 14
B. 13
C. 12
D. 8.6
E. 6.5
Higher-Degree Polynomial Functions
1. $P(x) = ax^4 + x^3 - bx^2 - 4x + c$. If $P(x)$ increases without bound as x increases without bound, then, as x decreases without bound, $P(x)$
A. increases without bound
B. decreases without bound
C. approaches zero from above the <i>x</i> -axis
D. approaches zero from below the <i>x</i> -axis
E. cannot be determined
2. Which of the following is an odd function?
$I. f(x) = 3x^3 + 5$
II. $g(x) = 4x^6 + 2x^4 - 3x^2$
III. $h(x) = 7x^5 - 8x^3 + 12x$
A. only I
B. only II
C. only III
D. only I and II
E. only I and III
3. How many possible rational roots are there for $2x^4 + 4x^3 - 6x^2 + 15x - 12 = 0$?
A. 4
B. 6
C. 8
D. 12
E. 16

4. If both x - 1 and x - 2 are factors of $x^3 - 3x^2 + 2x - 4b$, then b must be

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

5. If $3x^3 - 9x^2 + Kx - 12$ is divisible by x - 3, then K =

- A. -40
- B. -3
- C. 3
- D. 4
- E. 22

6. Write the equation of lowest degree with real coefficients if two of its roots are -1 and 1 + i.

A.
$$x^3 + x^2 + 2 = 0$$

B.
$$x^3 - x^2 - 2 = 0$$

C.
$$x^3 - x + 2 = 0$$

D.
$$x^3 - x^2 + 2 = 0$$

E. none of the above

Inequalities

1. Which of the following is equivalent to $3x^2 - x < 2$?

A.
$$-\frac{3}{2} < x < 1$$

$$-1 < x < \frac{2}{3}$$

$$-\frac{2}{3} < x < 1$$

C.
$$-\frac{2}{3} < x < 1$$
D. $-1 < x < \frac{3}{2}$

E.
$$x < -\frac{2}{3} \text{ or } x > 1$$

- **2.** Solve $x^5 3x^3 + 2x^2 3 > 0$.
- A. (-∞,-0.87)
- B. (-1.90,-0.87)
- C. $(-1.90, -0.87) \cup (1.58, \infty)$
- D. (-0.87,1.58)
- E. (1.58,∞)
- **3.** The number of integers that satisfy the inequality $x^2 + 48 < 16x$ is
- A. 0
- B. 4
- C. 7
- D. an infinite number
- E. none of the above

Trigonometric Functions and Their Inverses Definitions

- 1. Express cos 320° as a function of an angle between 0° and 90°.
- A. cos 40°
- B. sin 40°
- C. cos 5°
- D. sin 50°
- E. none of the above
- **2.** If point P(-5,12) lies on the terminal side of $\mathbb{Z}\theta$ in standard position, $\sin \theta =$
- A. $-\frac{12}{13}$
- _5 B. 12
 - -5
- C. 13

- D. 13
- E. 5
- 3. If $\sec \theta = -\frac{5}{4}$ and $\sin \theta > 0$, then $\tan \theta =$
- A. $\frac{4}{3}$
- $\frac{3}{4}$
- c. $-\frac{3}{4}$
- D. $-\frac{4}{3}$
- E. none of the above
- **4.** If x is an angle in quadrant III and $\tan (x 30^\circ) = \cot x$, find x.
- A. 240°
- B. 225°
- C. 210°
- D. 60°
- E. none of the above
- 5. If $90^{\circ} < \alpha < 180^{\circ}$ and $270^{\circ} < \beta < 360^{\circ}$, then which of the following *cannot* be true?
- A. $\sin \alpha = \sin \beta$
- B. $\tan \alpha = \sin \beta$
- C. $\tan \alpha = \tan \beta$
- D. $\sin \alpha = \cos \beta$
- E. $\sec \alpha = \csc \beta$
- **6.** Expressed as a function of an acute angle, cos 310° + cos 190° =
- A. -cos 40°

B. cos 70°
Ccos 50°
D. sin 20°
Ecos 70°
Arcs and Angles
1. An angle of 30 radians is equal to how many degrees?
A. $\frac{\pi}{30}$
B. $\frac{\pi}{6}$
C. $\frac{30}{\pi}$
D. $\frac{540}{\pi}$
E. $\frac{5400}{\pi}$
2. If a sector of a circle has an arc length of 2π inches and an area of 6π square inches, what is the length of the radius of the circle?
A. 1
B. 2
C. 3
D. 6
E. 12
3. If a circle has a circumference of 16 inches, the area of a sector with a central angle of 4.7 radians is
A. 10
B. 12
C. 15
D. 25
E. 48
4. A central angle of 40° in a circle of radius 1 inch intercepts an arc whose length is s. Find s.

B. 1.4
C. 2
D. 3
E. 40
5. The pendulum on a clock swings through an angle of 25°, and the tip sweeps out an arc of 12 inches. How long is the pendulum?
A. 1.67 inches
B. 13.8 inches
C. 27.5 inches
D. 43.2 inches
E. 86.4 inches

A. 0.7