Math Level 1 SAT Practice Test 13

21. Chords \overline{AB} and \overline{CD} of circle O intersect at point E. If CE = 3,

22. Which is the equation of the line perpendicular to 4x - 5y = 17 that

(A) 4x - 5y = 10 (B) 5x + 4y = 33 (C) 4x + 5y = 30

(D) 13

(E) 18

ED = 12, and AE is 5 units longer than EB, AB =

(D) 5x - 4y = 17 (E) $y = \frac{-5}{4}x + \frac{15}{2}$

(C) 11

(B) 9

passes through the point (5,2)?

(A) 4

23. A stone is thrown vertically into the air from the edge of a building with height 12 meters. The height of the stone is given by the formula h = -4.9t² + 34.3t + 12. What is the maximum height, in meters, of the stone? (A) 3.5 (B) 12 (C) 72.025 (D) 114.9 (E) 468.2
24. In $\triangle ABC$, $AB = 40$, the measure of angle $B = 50^{\circ}$, and $BC = 80$. The area of $\triangle ABC$ to the nearest integer is
(A) 613 (B) 1024 (C) 1226 (D) 2240 (E) 2252 25. If $\frac{a+b}{2} = 4$, and a and b are non-negative integers, which of the
following cannot be a value of <i>ab</i> ? (A) 0 (B) 7 (C) 14 (D) 15 (E) 16
26. The perpendicular bisector of the segment with endpoints (3,5) and (-1,-3) passes through (A) (-5,2) (B) (-5,3) (C) (-5,4)
(D) (-5,5) (E) (-5,6) 27. The difference between the product of the roots and the sum of the roots of the quadratic equation $6x^2 - 12x + 19 = 0$ is (A) $\frac{7}{6}$ (B) $\frac{31}{6}$ (C) $\frac{7}{12}$ (D) $\frac{31}{12}$ (E) $-\frac{7}{6}$

28. In right triangle ABC, $\overline{DE} \parallel \overline{BC}$, CD = 1.5, and BE = 2.0.

The sine of angle θ is equal to

- (A) $\frac{1}{2}$ (B) $\frac{3}{4}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$ (E) $\frac{3}{5}$

29. QUEST is a pentagon. The measure of angle Q = 3x - 20, the measure of angle U = 2x + 50, the measure of angle E = x + 30, the measure of angle S = 5x - 90, and the measure of angle T = x + 90. Which two angles have equal measures?

- (A) E and S
- (B) Q and *U*
- (C) U and T

- (D) T and E
- (E) U and E

 The vertices of triangle PQR are P(-3,2), Q(1,-4), and R(7,0). The altitude drawn from Q intersects the line PR at the point

- (A) (1,2)
- (B) (2,1)
- (C)(1,-2)
- (D) (-3,2)
- (E) (7,0)

31. If q is a positive integer > 1 such that $q^{3n^{2-n-4}} = 1$, n =

- (A) 1 (B) -1 (C) $1, \frac{-4}{3}$ (D) -1, $\frac{4}{3}$ (E) $\frac{1 \pm i\sqrt{47}}{6}$

The measure of arc AB in circle O is 108°.

$$\frac{a+b+c}{3} =$$

- (B) 27
- (C) 36
- (D) 45
- (E) 54

33. Alex observed that the angle of elevation to the top of 800-foot Mount Colin was 23°. To the nearest foot, how much closer to the base of Mount Colin must Alex move so that his angle of elevation is doubled?

- (A) 200
- (B) 400
- (C) 489
- (D) 1112
- (E) 1600

34. If $f(x) = \frac{x^2 + x - 6}{x^2 - 6x + 8}$, solve f(x) = 3.

(A)
$$\{-5, -1\}$$
 (B) $\{2, 7.5\}$ (C) $\left\{\frac{1+3\sqrt{7}}{2}, \frac{1-3\sqrt{7}}{2}\right\}$ (D) $\left\{\frac{17+\sqrt{73}}{6}, \frac{17-\sqrt{73}}{6}\right\}$ (E) \emptyset

35. In $\triangle QRS$, X is on \overline{QR} and Y is on \overline{QS} , so that $\overline{XY} \parallel \overline{RS}$ and $\frac{QX}{XR} = \frac{1}{4}$. The ratio of the area of $\triangle QXY$ to the area of trapezoid XYSR is

- (A) 1:4
- (B) 1:15
- (C) 1:16
- (D) 1:24
- (E) 1:25

36. In quadrilateral KLMN, KL = LM, KN = MN, and diagonals \overline{KM} and \overline{NL} intersect at P. If KP = PM, then which of the following statements is true?

- I. NP = PL.
- II. KLMN is a rhombus.
- III. The area of *KLMN* is $\frac{1}{2}$ (*KM*)(*NL*).
- (A) I only
- (B) II only
- (C) III only

- (D) II and III only
- (E) I and III only

37. If 7x + 9y = 86 and 4x - 3y = -19, x + 4y =

- (A) $-31\frac{18}{19}$ (B) $22\frac{1}{3}$ (C) $31\frac{18}{19}$ (D) 35
- (E) 105

38. The solution set to $10x^2 + 11x - 6 \le 0$ is

- (A) $-0.4 \le x \le 1.5$ (B) $-1.5 \le x \le 0.4$ (C) $x \le -0.4$ or $x \ge 1.5$
- (D) $x \le -1.5$ or $x \ge 0.4$ (E) $-1.5 \le x \le -0.4$

39. In simplest form, $\frac{2 - \frac{1}{x - 3}}{1 - \frac{1}{3 - x}}$ is equivalent to

- (A) $\frac{2x-7}{x-2}$ (B) $\frac{7-2x}{x-2}$ (C) $\frac{2x-5}{x-2}$
- (D) $\frac{2x+7}{x-2}$ (E) 1

 In right triangle QRS, QR is perpendicular to RS, QR = 12, and RS = $12\sqrt{3}$. The area of the circle that circumscribes triangle QRS is

- (A) 108π
- (B) 144π
- (C) 288π
- (D) 576π
- (E) 1728π