## **Chemistry Practice Test SAT 30**



The lab setup shown above was used for the gravimetric analysis of the empirical formula of MgO. In synthesizing MgO from a Mg strip in the crucible, which of the following is NOT true?

- A. The initial strip of Mg should be cleaned.
- B. The lid of the crucible should fit tightly to exclude oxygen.
- C. The heating of the covered crucible should continue until the Mg is fully reacted.
- D. The crucible, lid, and the contents should be cooled to room temperature before measuring their mass.
- E. When the Mg appears to be fully reacted, the crucible lid should be partially removed and heating continued.
- Q2. Question below refers to the following experimental setup and data:



## Recorded data:

Weight of U-tube...... 20.36 g

Weight of U-tube and calcium chloride before...... 39.32 g

| Weight of U-tube and calcium chloride after | <b>57</b> . | .32 | 2 ( | g |
|---------------------------------------------|-------------|-----|-----|---|
|---------------------------------------------|-------------|-----|-----|---|

Weight of boat and contents (copper oxide) before...... 30.23 g

Weight of boat and contents after...... 14.23 g

Weight of boat......5.00 g

What is the reason for the first CaCl<sub>2</sub> drying tube?

- A. Generate water
- B. Absorb hydrogen
- C. Absorb water that evaporates from the flask
- D. Decompose the water from the flask
- E. Act as a catalyst for the combination of hydrogen and oxygen
- Q3. Question below refers to the following experimental setup and data:



## Recorded data:

Weight of U-tube...... 20.36 g

Weight of U-tube and calcium chloride before...... 39.32 g

Weight of U-tube and calcium chloride after...... 57.32 g

Weight of boat and contents after...... 14.23 g

Weight of boat......5.00 g

What conclusion can be derived from the data collected?

- A. Oxygen was lost from the CaCl<sub>2</sub>.
- B. Oxygen was generated in the U-tube.

- C. Water was formed from the reaction.
- D. Hydrogen was absorbed by the CaCl<sub>2</sub>.
- E. CuO was formed in the decomposition.
- Q4. Question below refers to the following experimental setup and data:



## Recorded data:

Weight of U-tube...... 20.36 g

Weight of boat......5.00 g

What is the ratio of the mass of water formed to the mass of hydrogen used in the formation of water?

A. 1:8

B. 1:9

C. 8:1

D. 9:1

E.8:9

Q5. What is the mass, in grams, of 1 mole of  $KAl(SO_4)_2 \cdot 12H_2O$ ?

A. 132

B. 180

- C. 394
- D. 474
- E. 516

Q6. What mass of aluminum will be completely oxidized by 2 moles of oxygen at STP?

- A. 18 g
- B. 37.8 g
- C. 50.4 g
- D. 72.0 g
- E. 100.8 g

Q7. In general, when metal oxides react with water, they form solutions that are

- A. acidic
- B. basic
- C. neutral
- D. unstable
- E. colored



The oxidation reaction will occur at

- A. A
- B.B
- C. C
- D. D

E.E



The apparatus at C is called the

- A. anode
- B. cathode
- C. salt bridge
- D. ion bridge
- E. osmotic bridge



The standard potentials of the metals are:

$$Zn^{2+} + 2e^{-} \rightarrow Zn^{0} E^{0} = -0.76 \text{ volt}$$

$$Cu^0 \to Cu^{2+} + 2e^- E^0 = -0.34 \text{ volt}$$

What will be the voltmeter reading for this reaction?

- A. +1.10
- B. -1.10
- C. +0.42

| D0.42                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E1.52                                                                                                                                                                                                               |
| Q11. How many liters of oxygen (STP) can be prepared from the decomposition of 212 grams of sodium chlorate (1 mol = 106 g)?                                                                                        |
| A. 11.2                                                                                                                                                                                                             |
| B. 22.4                                                                                                                                                                                                             |
| C. 44.8                                                                                                                                                                                                             |
| D. 67.2                                                                                                                                                                                                             |
| E. 78.4                                                                                                                                                                                                             |
| Q12. In this equation: Al(OH) $_3$ + H $_2$ SO $_4$ $\to$ Al $_2$ (SO $_4$ ) $_3$ + H $_2$ O, the whole-number coefficients of the balanced equation are                                                            |
| A. 1, 3, 1, 2                                                                                                                                                                                                       |
| B. 2, 3, 2, 6                                                                                                                                                                                                       |
| C. 2, 3, 1, 6                                                                                                                                                                                                       |
| D. 2, 6, 1, 3                                                                                                                                                                                                       |
| E. 1, 3, 1, 6                                                                                                                                                                                                       |
| Q13. What is $\Delta H_{reaction}$ for the decomposition of 1 mole of sodium chlorate? ( $\Delta H_f^0$ values: NaClO <sub>3</sub> (s) = -85.7 kcal/mol, NaCl(s) = -98.2 kcal/mol, O <sub>2</sub> (g) = 0 kcal/mol) |
| A183.9 kcal                                                                                                                                                                                                         |
| B91.9 kcal                                                                                                                                                                                                          |
| C. +45.3 kcal                                                                                                                                                                                                       |
| D. +22.5 kcal                                                                                                                                                                                                       |
| E12.5 kcal                                                                                                                                                                                                          |
| Q14. Isotopes of an element are related because which of the following is (are) the same in these isotopes?                                                                                                         |
| I. Atomic mass                                                                                                                                                                                                      |
| II. Atomic number                                                                                                                                                                                                   |
| III. Arrangement of orbital electrons                                                                                                                                                                               |

- A. I only
- B. II only
- C. I and II only
- D. II and III only
- E. I, II, and III

Q15. In the reaction of zinc with dilute HCI to form  $H_2$ , which of the following will increase the reaction rate?

- I. Increasing the temperature
- II. Increasing the exposed surface of zinc
- III. Using a more concentrated solution of HCI
- A. I only
- B. II only
- C. I and III only
- D. II and III only
- E. I, II, and III



The laboratory setup shown above can be used to prepare a

- A. gas lighter than air and soluble in water
- B. gas heavier than air and soluble in water
- C. gas soluble in water that reacts with water
- D. gas insoluble in water
- E. gas that reacts with water

| Q17. In this reaction: $CaCO_3 + 2HCI \rightarrow CaCl_2 + H_2O + CO_2$ . If 4.0 moles of HCI are available to the reaction with an unlimited supply of $CaCO_3$ , how many moles of $CO_2$ can be produced at STP? |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. 1.0                                                                                                                                                                                                              |
| B. 1.5                                                                                                                                                                                                              |
| C. 2.0                                                                                                                                                                                                              |
| D. 2.5                                                                                                                                                                                                              |
| E. 3.0                                                                                                                                                                                                              |
| Q18. A saturated solution of BaSO $_4$ at 25°C contains 3.9 × 10 $^{-5}$ mole/liter of Ba $^{2+}$ ions. What is the K $_{\rm sp}$ of this salt?                                                                     |
| A. 3.9 × 10 <sup>-5</sup>                                                                                                                                                                                           |
| B. 3.9 × 10 <sup>-6</sup>                                                                                                                                                                                           |
| $C. 2.1 \times 10^{-7}$                                                                                                                                                                                             |
| D. 1.5 × 10 <sup>-8</sup>                                                                                                                                                                                           |
| E. 1.5 × 10 <sup>-9</sup>                                                                                                                                                                                           |
| Q19. If 0.1 mole of $\rm K_2SO_4$ was added to the solution in question 64, what would happen to the $\rm Ba^{2^+}$ concentration?                                                                                  |
| A. It would increase.                                                                                                                                                                                               |
| B. It would decrease.                                                                                                                                                                                               |
| C. It would remain the same.                                                                                                                                                                                        |
| D. It would first increase, then decrease.                                                                                                                                                                          |
| E. It would first decrease, then increase.                                                                                                                                                                          |
| Q20. Which of the following will definitely cause the volume of a gas to increase?                                                                                                                                  |
| I. Decreasing the pressure with the temperature held constant.                                                                                                                                                      |
| II. Increasing the pressure with a temperature decrease.                                                                                                                                                            |
| III. Increasing the temperature with a pressure increase.                                                                                                                                                           |
| A. I only                                                                                                                                                                                                           |
| B. II only                                                                                                                                                                                                          |
|                                                                                                                                                                                                                     |

| C. I and III only                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------|
| D. II and III only                                                                                                                |
| E. I, II, and III                                                                                                                 |
| Q21. The number of oxygen atoms in 0.50 mole of Al <sub>2</sub> (CO <sub>3</sub> ) <sub>3</sub> is                                |
| A. $4.5 \times 10^{23}$                                                                                                           |
| B. $9.0 \times 10^{23}$                                                                                                           |
| C. $3.6 \times 10^{24}$                                                                                                           |
| D. $2.7 \times 10^{24}$                                                                                                           |
| E. $5.4 \times 10^{24}$                                                                                                           |
| Q22. Question below refers to a solution of 1 M acid, HA, with $K_a = 1 \times 10^{-6}$ .                                         |
| What is the $H_3O^+$ concentration? (Assume [HA] = 1, $[H_3O^+]$ = x, $[A^-]$ = x.)                                               |
| A. 1 × 10 <sup>-5</sup>                                                                                                           |
| B. 1 × 10 <sup>-4</sup>                                                                                                           |
| C. 1 × 10 <sup>-2</sup>                                                                                                           |
| D. $1 \times 10^{-3}$                                                                                                             |
| E. 0.9 × 10 <sup>-3</sup>                                                                                                         |
| Q23. What is the percent dissociation of acetic acid in a 0.1 M solution if the [H $_3O^+$ ] is 1 × 10 $^{\text{-}3}$ mole/liter? |
| A. 0.01%                                                                                                                          |
| B. 0.1%                                                                                                                           |
| C. 1.0%                                                                                                                           |
| D. 1.5%                                                                                                                           |
| E. 2.0%                                                                                                                           |
|                                                                                                                                   |