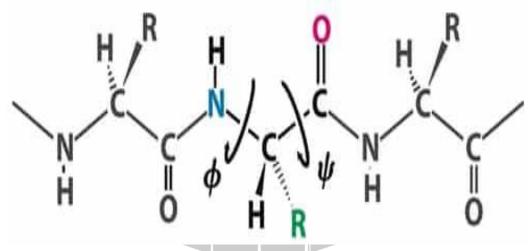
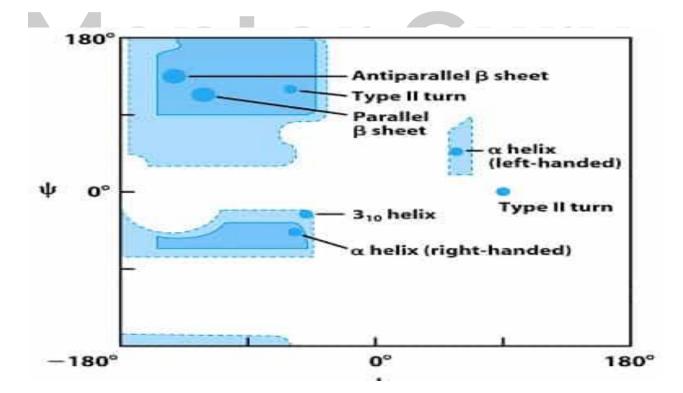

Peptide bond and Ramachandran plot


A **peptide** is a compound consisting of **two or more amino acids**. When two amino acid molecules are linked through a peptide bond, the product is called a dipeptide.


- Peptides and polypeptides are mostly linear and unbranched polymer composed of amino acids linked together by peptide bonds.
- Peptide bonds are amide linkages formed between an alpha-amino group of one amino acid and the alpha carboxyl group of another.
- The reaction is a dehydration reaction: a water molecule is removed, and the linked amino acids are referred to as amino acid residues.
- The peptide C-N Bond has a partial double bond character. Due to the
 partial double bond character, two possible configurations, cis and trans,
 are observed for a peptide bond in polypeptides.

• The alpha carbon ($C\alpha$) in the centre of each amino acid is held in the main chain by two rotatable bonds. The dihedral (torsion) **angles** of these bonds are called **Phi and Psi** (Greek letters, ϕ and ψ). In fact, most **Phi and Psi angle** combinations are impossible because two atoms cannot occupy the same space.

- Most values of φ and ψ are not allowed due to steric interference between atoms in the polypeptide backbone and amino acid side chains.
- The combination of φ and ψ values permitted in peptide backbone or that are not permitted due to steric constraints were first determined by G.N Ramachandran.
- These permitted values can be visualized on a two-dimensional plot called a Ramachandran plot.

- The **Ramachandran plot** is a **plot** of the torsional angles phi (ϕ)and psi (ψ) of the residues (amino acids) contained in a peptide.
- By making a **Ramachandran plot**, protein structural scientists can determine which torsional angles are permitted and obtain insight into peptides' structure.

